

1. Background

(1) Causes of Oil Price Surges

Demand side: Crude oil demand growth has gone up. (Increased Transportation & Urbanisation in China) Supply side: Limited fossil fuel.

-Volatility has increased (Political factor e.g. Fattouh 2005)

(2) Causes of Food Price Surges

-Supply Side: Decline in Cereal Stock (2004-6)

- Increasing fuel costs (input & transportation)

- -Demand Side: Diversification of Diet towards Meat or Milk in India and China
- The emerging biofuels market

4	'000 tonnes	1.038.325	1.001.221	932.527	1.041.992
Cereals '	% change	, ,	-3.6	-6.9	11.7
	'000 tonnes	281,589	293,097	306,387	288,762
Oilseeds [–]	% change		4.1	4.5	-5.8
2	'000 tonnes	196,050	203,317	208,057	209,601
Meat	% change		3.7	2.3	0.7
4	'000 tonnes	370,986	378,730	383,840	394,459
Dairy 🕈	% change		2.1	1.3	2.8
-	'000 tonnes	76,882	93,451	103,101	102,139
Sugar ^o	% change		21.6	10.3	-0.9
' Includes Arg equivalents. 2 Includes Arg	gentina, Australia, gentina, Australia,	Canada, EU, In Bangladesh, C	dia, Pakistan, Th anada, China, El	ailand and USA. R J, India, Pakistan, I	tice is in milled Russian be seed and

(3) Effects of Surge in Oil Prices and Food Prices(a) Macro levels

-Short term effects

Effects on Trade, Growth and Productivity

- -depending on whether the country is a net food importer/ oil importer.
- -depending on the country's fragility (e.g. SSA)
- (b) Micro levels (distribution) The poorest in Sub Saharan African or South Asian Countries in both urban and rural areas are likely to be affected.
- The poor in rural areas (incl. small farmers) tend to be neglected. 12

How are the rural poor affected

(e.g. simple simulations by Ivanic and Martin, 2008 (World Bank WPS 4594) or FAO (2008))

Net consumer of food

- agricultural workers (+ ve effects in wages ltd.)
- non-agricultural (unskilled) workers

Net producer of food

- Small-scale farmers (e.g. maize or rice)
- Upward supply response- weak and slow particularly for the poor.
- Productivity gains are concentrated on the rich farmers.

Bangladesh: effect of a 10% increase in the price of rice on welfare (percentages) FAO (2008) Assumptions – Partial Equilibrium, Shortrun (immediate effcts)

based on household models Singh, Squire and Strauss (1986) and Deaton (1989; 1997)

		Per ca	pita expe	nditure qu	uintiles	
	1	2	3	4	5	All
Rural	-3.19	-2.6	-1.88	-1.64	-1.1	-1.83
Urban	-2.37	-1.9	-1.45	-1.09	-0.71	-1.26
Total	-3.02	-2.33	-1.83	-1.36	-0.94	-1.64

Bangladesh: price of rice of	effect on we	of a 1 Ifare b	0% in y land	crease holdir	in the ngs	e
(percentages	5) FAC) (2008) Rural per	capita ex	penditure	quintiles	5
Land Quintiles	1	2	3	4	5	All
Landless	-3.26	-2.81	-2.28	-2.02	-1.41	-2.33
1	-3.72	-2.59	-2.19	-2.14	-1.66	-2.31
2	-3.1	-2.88	-2.34	-1.66	-1.23	-1.76
3	-1.77	-2.55	-1.61	-1.45	-0.86	-1.44
4	-2.49	-1.33	-1.06	-0.85	-0.74	-0.99
5	-5.09	-2.45	-0.23	-1.09	-0.79	-0.98
						15

Malawi: effect of a 10% increase in the price of maize on welfare (percentages) FAO (2008)

	1	2	3	4	5	All
Rural	-1.23	-0.57	-0.23	-0.02	0.53	-0.1
Urban	-2.56	-1.95	-1.38	-1.19	-0.22	-1.12
Total	-1.26	-0.64	-0.37	-0.23	-0.13	-0.3

- Hypothesis A. Whether oil price (or rainfall) affected positively (or negatively) the commodity prices and one commodity price affected another (by co-integration & VAR applied the world as well as India and China),
- Hypothesis B. Whether international commodity price fully transmitted to the domestic price (by error correction model for India and China (e.g. Baffes and Gardner 2003; Mundlak and Larson1992),
- Hypothesis C. Whether commodity price (or relative oil price) positively (or negatively) affected the domestic supply (by panel data for 10 Asian countries)

2. Data, Methodology and Results

Data for Time Series Analysis

- Monthly Data: The IMF Primary Commodity Prices data (Jan 1980-Oct 2007 (or Mar 2008))
- Maize- US No. 2, FOB Gulf of Mexico, U.S. price, US\$ per metric tone.
- Wheat-US No.1 Hard Red Winter, ordinary protein, FOB Gulf of Mexico, US\$ per metric tone.
- Rice- 5 percent broken milled white rice, Thailand nominal price quote, US\$ per metric tone.
- Oil (Crude Oil (petroleum), simple average of Dated Brent, West Texas Intermediate, and the Dubai Fateh, US\$ per barrel.

12

Annual Data (1966-2007) Based on FAO-STAT and UNCTAD commodity price statistics.

Rainfall data Based on he Tynadall Climate Research Centre at University of East Anglia.

Panel data -

10 Asian countries: Bangladesh, Cambodia, China, India, Indonesia, Nepal, Pakistan, the Philippines, Sri Lanka, and Thailand Period 1966 to 2005

19

21

Methodology- Time Series Analyses A.Whether oil price and rainfall affected the commodity prices and one commodity price affects another

1.Unit-Root Test: Dickey-Fuller test- GLS regression based Test (Elliot, Rothenberg, and Stock, 1996) for Monthly and Annual Data for Global, India and China (Wheat, Maize, Rice, Vegetable, Fruit, and Oilseeds)

20

2. Co-integration Test: A vector autoregressive (VAR) model proposed by Johansen (1988, 1991, and 1992) and Johansen and Juselius (1990). E.g., $(p^{o}_{t} - p^{m}_{t}) \sim I(0)$ to see whether oil price and maize price is co-integrated. Each pair is denoted by the vector form. $X_{t} = \Pi_{1}X_{t-1} + ... + \Pi_{k}X_{t-k} + \varepsilon_{t}$ (1) where t = 1, ..., T. Then taking the first difference $\Delta X_{t} = \sum_{i=1}^{k-1} \Gamma_{i}\Delta X_{t-i} + \Pi X_{t-1} + \varepsilon_{t}$ (2) where $\Pi = -(I - \Pi_{1} - ... - \Pi_{k})$ with i = 1, ..., k-1 and

 $\Pi = -(I - \Pi_1 - ... - \Pi_k)$

Johansen's cointegration is to test the null hypothesis that the number of rank (r) of Π is greater than 0 and smaller than n, the number of stochastic endogenous variables (in this case, 2). 3. Vector Autoregressions and Impulse Functions as well as Granger Causality Tests are carried out. NB - Toda and Yamamoto (1995): Even if the process is integrated or cointegrated of an arbitrary order in VAR, a lag-selection procedure by estimating (k+ d_{max})th-order VAR where k is determined as a lag length determined by AIC or SIC, for example, is feasible, and d_{max} is the maximal order of integration 22

Unit-root test (monthly-Wo	orld)		
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
-	E	DF-GL	S Test	
-	With trend	1	Without tree	nd
	Test		Test	
	Statistics a, f	Lags ^g	Statistics a, f	Lags ^g
Monthly Price- L	evels			
Maize	-3.454 *	1	-3.331	1
log (Maize)	-3.365 *	1	-3.299	1
Wheat	-1.211	1	-1.064	1
log (Wheat)	-1.681	1	-1.621	1
Rice	-2.29	1	-1.498	1
log (Rice)	-2.296	1	-1.363	2
OÍ	-0.212	1	0.003	1
log (Oil)	-1.297	1	-1.297	1
Monthly Price- F	First Differenc	е		
DMaize	-5.862 **	2	-2.41 *	6
Dlog (Maize)	-6.087 **	2	-3.947 **	2
D.Wheat	-9.88 **	1	-8.748 **	1
Dlog (Wheat)	-10.548 **	1	-9.476 **	1
DRice	-11.68 **	1	-11.27 **	1
D.log (Rice)	-12.162 **	1	-11.946 **	1
DOÍ	-12.024 **	1	-11.628 **	1
Dlog (Oil)	-12.202 **	1	-11.667 **	1

-	World (Annual)						
-		E	F-G	_S Test			
-	With	Trend	ł	Wit	nout	t Tre	nd
	Test			Test			
	tatistics ^{a, b}	Lags	c	Statistics	a, b	ads	с
I. Price -Levels	2 0 2 2	1	1(4)	1 701		1	1(4)
log (P_Wheat)	-3.022	4	NA	1 771		4	1(1)
log (P_lviaize)	-3.463 *	1	1(0)	-2 841	*	1	1(1)
log (P_Fruit)	-1 912	1	1(1)	-0.271		1	1(1)
log (P. Vegetable)	-2 919	1	1(1)	-1 164		2	1(1)
log (P Oilseeds)	-		,			~	,
log (P_Oil)	-1.800	1	I(1)	-0.456		1	I(1)
Price- First Difference	s						
Dlog (P_Wheat)	-6.886 **	1		-6.806	**	1	
Dlog (P_Maize)	-2.557	1		-2.492	**	1	
Dlog (P_Rice)	-5.982 **	1		-4.786	**	1	
Dlog (P_Fruit)	-5.078 **	1		-5.599	**	1	
Dlog (P_Vegetable)	-8.211 **	1		-7.739	**	1	
Dlog (P_Oilseeds)	-						
Dlog (P_Oil)	-4.071 **	1		-4.129	**	1	
Dlog (Rainfall)	-5.535 **	1		-4.129	**	1	

Unit-root tests	(annu	la) –	Indi	а			
	(.,					
•				E-GL	ual) S Test			
	Wi	th T	renc		Wit	hou	t Tre	and
	Test				Test			
s	tatistics ^a	. ь	ads	° 5	tatistics	а, ь	lag	
I. Price -Levels								
log (P_Wheat)	-2.631		1	I(1)	-1.143		2	NA
log (P_Maize)	-3.339	*	1	I(0)	-3.753	**	1	I(O)
log (P_Rice)	-1.724		1	I(1)	-1.371		1	I(1)
log (P_Fruit)	-2.229		1	I(1)	-0.157		1	I(1)
log (P_Vegetable)	-1.570		1	I(1)	-0.281		1	I(1)
log (P_Oilseeds)	-1.962		1	l(1)	-1.712		1	I(1)
log (P_Oil)	-							
Price- First Difference	es							
Dlog (P_Wheat)	-5.633	**	1		-0.632		6	
Dlog (P_Maize)	-5.476	**	1		-2.424	*	2	
Dlog (P_Rice)	-5.809	**	1		-5.413	**	1	
Dlog (P_Fruit)	-3.287	*	1		-2.231	*	1	
Dlog (P_Vegetable)	-3.509	*	1		-3.294	*	1	
Dlog (P_Oilseeds)	-4.229	**	1		-3.777	**	1	
Dlog (P_Oil)	-							
Dlog (Rainfall)	-5.338	**	1		-3.492	**	1	

Jnit-root tests	(ann	ua	il) -	-Cł	nina			
-		C	, China	(Anr	nual)			
-			DF	-GL	S Test			
-	Wi	th T	rend		Wit	hout	Trer	nd
	Test				Test			
S	tatistics a	ьL	ags '	; S	tatistics	a, b [ags	с
I. Price -Levels								
log (P_Wheat)	-2.121		1	l(1)	-1.803		1	l(1)
log (P_Maize)	-1.356		1	l(1)	-1.183		1	l(1)
log (P_Rice)	-1.617		1	l(1)	-1.148		1	l(1)
log (P_Fruit)	-1.452		1	l(1)	-0.873		1	l(1)
log (P_Vegetable)	-1.532		1	l(1)	-0.959		1	l(1)
log (P_Oilseeds)	-1.544		1	l(1)	-0.997		1	l(1)
log (P_Oil)	-							
Price- First Difference	s							
Dlog (P_Wheat)	-3.800	**	1		-3.744	**	1	
Dlog (P_Maize)	-4.328	**	1		-4.211	**	1	
Dlog (P_Rice)	-4.508	**	1		-4.336	**	0	
Dlog (P_Fruit)	-4.463	**	1		-3.987	**	1	
Dlog (P_Vegetable)	-4.304	**	1		-4.197	**	1	
Dlog (P_Oilseeds)	-4.138	**	1		-4.079	**	1	
Dlog (P_Oil)	-							
Dlog (Rainfall)	-4.265	**	1		-2.879		1	

Johansen Cointegration test Results Most of the series (oil price series, commodity prices) are co-integrated with each other for both monthly and annual data. Weak evidence for the market efficiency hypothesis. Exceptions Monthly data (rice-oil : not-cointegrated) Annual data (fruit-oil or wheat-oil - not-cointegrated)

19-10-10-10-10-10-10-10-10-10-10-10-10-10-	
World- Monthly Data, VAR, Impulse	
Response Functions, and Granger	
Causality Tests	
Monthly Data-	
-VAR- (Lagged) Oil Prices do not have significant impact on commodity prices.	
 There is a strong link between monthly wheat and maize prices. 	
('Wheat to Maize' is stronger).	
-Granger Causality Tests- Oil significantly causes wheat.	
-Rice Granger causes oil prices.	
	28

mor	thly data)			
	Impulse Var	Response V	/ar	
	Oil Price	Wheat Price	9	
	Step	IRF	Higher	Lower
	0	0	0	0
	1	-0.013501	-0.079216	0.052214
	2	0.039312	-0.063903	0.142527
	3	0.090225	-0.033803	0.214253
	4	0.130149	-3.90E-05	0.260337
	5	0.159066	0.027665	0.290466
	6	0.179677	0.047766	0.311587
	7	0.19557	0.061813	0.329327

	log(P_	Wheat)		log(rai	nfall)		log(0	Dil)	
og(P_Wheat)	Coef.	z value		Coef.	z value		Coef.	z value	
.1	0.85	(5.44)	**	0.00	(0.04)		0.27	(1.10)	
.2	-0.43	(-3.23)	**	-0.04	(-1.23)		-0.43	(-2.05)	•
og(rainfall)									
1	-0.18	(-0.25)		-0.03	(-0.17)		2.84	(2.45)	•
.2	-1.99	(-2.81)	**	-0.38	(-2.20)	•	-0.70	(-0.63)	
og(Oil)									
1	0.12	(1.05)		0.05	(1.62)		0.92	(5.06)	**
.2	-0.07	(-0.62)		-0.04	(-1.53)		-0.04	(-0.22)	
Constant	17.97	(2.53)		10.19	(5.84)		-14.00	(-1.27)	
bs	2	19		29			29	<u> </u>	
MSE	0.13	8704		0.033	972		0.21	56	
-sq	0.6	645		0.24	82		0.83	65	
hi²	57.4	4506		9.576	059		148.3	926	
>chi2		0		0.14	37		0.00	00	

(annual da	esponse Fund Ital	ction -from (Dil to Whea			
Impulse	ild)					
Var.	Response	Response Var.				
Rainfall	Wheat Price					
Step	IRF	Higher	Lower			
0	0	0	0			
1	-0.183881	-1.642	1.27424			
2	-1.78813	-3.46758	-0.10868			
3	-1.32075	-2.70633	0.064825			
4	0.067407	-1.05822	1.19304			
5	0.710188	-0.31601	1.73639			
6	0.489913	-0.30288	1.2827			
7	0.063409	-0.59934	0.726155			

- Rainfall has a negative effect on wheat price, but the negative effect of rainfall fades away gradually.
- Rainfall and maize price are strongly correlated. The former Granger causes the latter.

India – VAR for oil and commodity prices
 VAR for oil prices and various commodity prices
 Oil price has positive and significant effects on prices of wheat, rice, fruit and vegetable. The former Granger causes the latter, but <i>not</i> vice versa. Agricultural commodity prices are interlinked (e.g. Wheat and Rice)

	log(P	Wheat)	log(F	P_Rice)	log(F	P_Fruit)	log(P_v	egetable)	log	(P_Oil)
	Coef.	z value	Coef.	z value	Coef.	z value	Coef.	z value	Coef.	z value
log(P_Wheat)										
L1	0.00	(-0.01)	-0.60	(-2.51)*	-0.49	(-2.60)**	0.59	(1.17)	-0.36	(-0.73
L2	-0.37	(-1.91)+	-0.74	(-3.02)**	-0.03	(-0.18)	-0.93	(-1.80)+	0.12	(0.24
log(P_Rice)										
L1	0.27	(2.10)*	0.89	(5.51)**	0.20	(1.56)	0.07	(0.21)	1.29	(3.86)*
L2	-0.01	(-0.05)	-0.01	(-0.06)	-0.35	(-2.45)*	0.39	(1.01)	-1.27	(-3.38)*
log(P_fruit)										
L1	0.18	(1.29)	-0.11	(-0.63)	0.76	(5.32)**	-0.43	(-1.14)	-0.22	(-0.60
L2	0.05	(0.30)	0.27	(1.28)	0.05	(0.29)	0.46	(1.03)	-0.19	(-0.43
log(P_vegetable)									
L1	-0.01	(-0.23)	-0.04	(-0.59)	0.03	(0.56)	0.72	(4.82)**	0.04	(0.25
L2	0.05	(1.01)	0.10	(1.44)	0.11	(1.98)*	0.20	(1.39)	0.16	(1.15
log(P_Oil)										
L1	0.13	(2.13)*	0.09	(1.18)	0.13	(2.08)*	0.35	(2.15)*	0.92	(5.70)*
L2	0.03	(0.49)	0.17	(2.40)*	0.02	(0.27)	-0.37	(-2.47)*	-0.09	(-0.61
cons	3.70	(4.40)	5.35	(4.98)	3.22	(3.81)	-0.23	(-0.10)	2,79	(1.25

Rainfall Granger causes fruit price.

China -VAR for Agricultural Commodity Prices

- The difference from the results for India
- Crude oil price has little impact on various agricultural commodity prices.
- Rather, vegetable price is a leading indicator that predicts other prices.
- (e.g. Vegetable price Granger causes the prices of rice and fruit, but not vice versa).
- IRF shows a positive and declining effect of vegetable price and wheat price on other prices.
- The inter-linkages among different commodity prices are weak.

	log(P	_Wheat)		log(l	P_Rice)		log(F	P_Fruit)		log(P_\	regetable)		logi	P_Oil)	
	Coef.	z value		Coef.	z value		Coef.	z value		Coef.	z value		Coef.	z value	
log(P_Whe	eat)														
L1	0.88	(5.27)	**	0.09	(0.53)		0.30	(1.36)		-0.03	(-0.20)		0.28	(1.35)	
L2	-0.10	(-0.57)		-0.03	(-0.18)		-0.29	(-1.25)		0.04	(0.30)		-0.11	(-0.53)	
log(P_Rice	e)														
L1	-0.11	(-0.56)		0.48	(2.49)	*	0.10	(0.38)		-0.02	(-0.15)		0.23	(0.90)	
L2	0.19	(1.01)		0.08	(0.42)		0.19	(0.75)		-0.03	(-0.22)		0.03	(0.11)	
log(P_fruit))														
L1	0.09	(0.63)		-0.15	(-1.07)		0.36	(1.90)	+	0.01	(0.13)		-0.06	(-0.34)	
L2	-0.30	(-2.05)	*	0.25	(1.76)	+	0.27	(1.42)		0.02	(0.18)		-0.28	(-1.54)	
log(P_veg	etable)														
L1	0.56	(1.96)	+	0.98	(3.56)	**	0.82	(2.18)	*	1.19	(5.54)	**	0.63	(1.76)	+
L2	-0.55	(-1.85)	+	-0.71	(-2.45)	*	-0.97	(-2.45)	*	-0.24	(-1.04)		-0.44	(-1.17)	
log(P_Oil)															
L1	0.03	(0.27)		-0.20	(-1.58)		-0.10	(-0.57)		0.01	(0.12)		0.77	(4.77)	**
L2	0.02	(0.22)		0.16	(1.42)		0.16	(1.09)		-0.05	(-0.59)		0.02	(0.11)	
_cons	1.45	(3.00)		0.36	(0.77)		0.64	(1.00)		0.39	(1.07)		-0.62	(-1.02)	
_0013	1.40	(0.00)		0.30	(0.11)		0.04	(1.00)		0.08	(1.07)		-0.02	(-1.02)	-

China- rainfall, oil, and each commodity price

- Wheat price Granger causes oil price.
- Significant causality is *not* found in the Granger tests in the direction from rainfall or oil to commodity prices
- Rainfall affects negatively wheat, maize, rice, fruit prices with one and/or two year lag. This is reflected in the numerical and graphical representations of the IRF.

39

37

Hypothesis B. Whether international commodity price affected the domestic price Mundlak and Larson (1992) simply estimated $p^{d} t = \alpha + \beta p^{w} t + \varepsilon_{t}$ (3) $H_{0}: \alpha + 1 = \beta = 1$ Suppose $\beta = 1$, (3) becomes $(p^{d} t - p^{w} t) \sim I(0)$ Attractive, but price are not stationary.... By adding lags, $p^{d} t = \alpha + \beta_{1}p^{w} t + \beta_{2}p^{d} t - 1 + \beta_{3}p^{w} t - 1 + e_{t}$ Suppose $\beta_{3} = 1 - \beta_{1} - \beta_{2} \equiv \beta$ this could be written as: $(p^{d} t - p^{d} t - 1) = \alpha + \gamma(p^{w} t - 1 - p^{d} t - 1) + \beta(p^{w} t - p^{w} t - 1) + e_{t}$

Let *k* be the extent of adjustment which takes place in *n* periods where the current period is defined as n = 0 and the next period is n = 1.

$$k = 1 - (1 - \beta)(1 - \gamma)^n$$

India Constant Adjustment Short-run 3 years Coefficent Effect Adjustment (t value) (t value) (t value) India 0.511 0.140 0.229 0.510 log(Wheat) (1.95)(2.14)* (2.42)* log(Maize) 0.028 0.448 0.099 0.246 (0.88). (0.76). (1.40). log(Rice) 0.021 0.189 0.293 0.623 (1.18). (2.34)* (4.00)** log(Fruit) 0.089 0.152 0.471 0.132 (2.30). (1.86) (1.08). log(Vegetable) 0.181 0 0 2 4 0.130 -0.242 (0.61) (2.72)** (-1.54) 42

China		Constant	A	Chart run	0
		Constant	Coofficent	Short-	3 years
		(t value)	(t value)	(t value)	Aujusunen
China					
	log(Wheat)	0.003	0.035	0.505	0.555
		(0.08).	(0.61).	(3.42)**	
	log(Maize)	-0.034	0.396	0.505	0.891
	-	(-1.06).	(3.00)**	(3.32)**	
	log(Rice)	0.010	0.200	0.295	0.640
		(0.34).	(3.22)**	(2.62)*	
	log(Fruit)	0.045	0.392	0.353	0.855
		(1.15).	(2.73)**	(1.16).	
	log(Vegetable)	-0.029	0.157	0.191	0.516
		(-0.84).	(2.04)*	(2.21)*	

Findings

45

- The extent of adjustment of domestic to global prices in the short to the mediumrun is generally larger in China than in India.
- Larger adjustment is found for wheat, maize and rice prices than for fruits and vegetables in India.

44

The adjustment is the weakest for vegetables in both India and China.

While most of the domestic commodity
prices co-move with global prices, the
transmission is in general incomplete (e.g.
due to distortionary government policies, -
subsidies for domestic agricultural
commodities and failure to exploit spatial
arbitrage).
- The potential benefits to farmers and a

larger supply response are likely to be restricted.

Growth of Food Trad	e and Infrast	ructure Dev	elopment	in China and	India
India	Food Export	Food Import	Rail lines	Roads	% of pav roads
	109US\$)	109US\$)	km)	km)	in total ro
1992	3.18	0.9	62486	2021441	51.9
2002	6.06	3.27	63140	3383344	47.4
Average annual growth rate (%)	6.45	12.90	0.10	5.15	-0.91
China	Food Export (current 109US\$)	Food Import (current 109US\$)	Rail lines (total route-	Roads (total network-	% of pav roads in total ro
1992	9.62	3.94	53566	1265916	NA
2002	16.1	10.4	59530	1765222	78.3
Average annual growth rate (%)	5.15	9.71	1.06	3.32	NA
					46

		1	Maize		Wheat	I	Rice
		Coef.	t value	Coef.	t value	Coef.	t value
Random	log(price) it	-0.10	(-1.24)	-0.11	(-0.93)	-0.09	(-1.45)
Effects	log(price) it-1	0.28	(4.14)	0.30	(2.66)	0.30	(5.51)
Model	log(P _{cil} /P _{commc}	-0.13	(-3.70)	0.05	(0.99)	-0.14	(-6.06)
	log (rainfall) _{it}						
	Constant	6.34	(31.67)	6.43	(16.99)	6.57	(39.61)
Number of	Observations	390		209		390	
Numbe	er of Countries	10		6		10	
F	eriod covered	1966-2005		1966-2005		1966-2005	

		Fruit		Vegetable		Oilseeds	
		Coef.	t value	Coef.	t value	Coef.	t value
Random	log(price) it	-0.03	(-0.45)	-0.06	(-1.55)	0.20	(1.65)
Effects	log(price) it-1	0.00	(0.04)	0.13	(3.76)	0.10	(0.91)
Model	log(P _{oi} /P _{commo}	-0.09	(-2.56)	-0.06	(-3.55)	0.10	(1.81)
	log (rainfall) it						
	Constant	8.87	(40.3)	8.60	(63.57)	5.38	(8.1)
Number of	Observations	331		390		220	
Numbe	er of Countries	10		10		7	
F	Period covered 1	966-2005		1966-2005		1966-2005	

Findings

-1 % increase in own price increase results in 0.28-0.30 % of per hectare yield increase with one year lag for maize, wheat, and rice.

-The response is weaker for fruits and vegetables.

-On the other hand, the yield response in the current period is stronger for oilseeds.

-Oil price seems to have a negative effect on yields of most of the commodities.

53

China -vegetable price leads other prices.

- Rainfall has a negative impact on wheat price (World and India).
- Rainfall affects negatively wheat, maize, rice, fruit prices in China.

Hypothesis B. Whether international commodity price affected the domestic price

Yes, but...

- The extent of adjustment of domestic to global prices in the short to the mediumrun is generally larger in China than in India.
- Larger adjustment is found for wheat, maize and rice prices than for fruits and vegetables in India.

54

Hypothesis C. Whether commodity price (or relative oil price) positively (or negatively) affected the domestic supply Yes.

- 1 % increase in own price increase results in 0.28-0.30 % of per hectare yield increase with one year lag for maize, wheat, and rice.
- The response is weaker for fruits and vegetables.
- The yield response in the current period is stronger for oilseeds.

55

Countries	Reduce or eliminate tariffs	Increase export levies	Quotas
Bangladesh	Reduced tariffs of rice and wheat imports by 5%		
Brazil	Considering removal of tariffs on wheat		
China		Introduced export levies on wheat, buckwheat, barley and oats by 10 % Increased those on wheat flour and starch, maize, sorghum, millet and soybeans	Introduced expor quotas on flour made of wheat, maize and rice

Countries	Reduce or eliminate tariffs	increase export levies	Quotas
India	tariffs on wheat and wheat flour		
Indonesia	Eliminated tariffs on wheat and soybeans		
Pakistan			on exports of wheat and whea flour

4. Conclusions (cont.)

- -Protection of the rural poor is crucial.
- -To promote smallholders, technical change and easier access to credit and insurances are important.
- -However, the desperate policy responses in the form of price and quantity restrictions may have a negative impact on small-holders in the long run given the positive impact of price on production and on market supply.